Experimentally based orientational refinement of membrane protein models: A structure for the Influenza A M2 H+ channel.

نویسندگان

  • A Kukol
  • P D Adams
  • L M Rice
  • A T Brunger
  • T I Arkin
چکیده

The 97-residue M2 protein from Influenza A virus forms H+-selective ion channels which can be attributed solely to the homo-tetrameric alpha-helical transmembrane domain. Site-directed infrared dichroism spectra were obtained for the transmembrane domain of M2, reconstituted in lipid vesicles. Data analysis yielded the helix tilt angle beta=31.6(+/-6.2) degrees and the rotational pitch angle about the helix axis for residue Ala29 omegaAla29=-59.8(+/-9.9) degrees, whereby omega is defined as zero for a residue located in the direction of the helix tilt. A structure was obtained from an exhaustive molecular dynamics global search protocol in which the orientational data are utilised directly as an unbiased refinement energy term. Orientational refinement not only allowed selection of a unique structure but could also be shown to increase the convergence towards that structure during the molecular dynamics procedure. Encouragingly, the structure obtained is highly consistent with all available mutagenesis and conductivity data and offers a direct chemical insight that relates the altered functionality of the channel to its structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Over Expression of Influenza Virus M2 Protein in Prokaryotic System

Background and Aims: Influenza A virus of Orthomyxoviridae family is able to create pandemic influenza. Vaccination is the most effective way to prevent influenza virus infection. Matrix protein 2 (M2) is a homotetramer ion channel with 97 amino acids length and highly conserved among influenza viruses and is considered for development of a universal influenza vaccine. Materials and Methods: We...

متن کامل

Construction of chimeric protein 3M2e.FliC and its immunoinformatics analyses and expression in Bacillus subtilis

Introduction: Influenza A virus causes unpredictable epidemics and pandemics by creating antigenic variations. With the appearance of each new strain, rapid emergency countermeasures are taken against this new strain. Hence, designing an applicable and cross protective strategy to counter this virus is of great importance. To achieve this, choosing conserved antigenic regions in influenza virus...

متن کامل

Influenza A Virus M2 Ion Channel Protein:

A structure-function analysis of the influenza A virus M2 ion channel protein was performed. The M2 protein of human influenza virus A/Udorn/72 and mutants containing changes on one face of the putative a helix of the M2 transmembrane (TM) domain, several of which lead to amantadine resistance when found in virus, were expressed in oocytes of Xenopus laevis. The membrane currents of oocytes exp...

متن کامل

Molecular evaluation of M2 protein of Iranian avian influenza viruses of H9N2 subtype in order to find mutations of adamantane drug resistance

Background: The H9N2 subtype of influenza A viruses is considered to be widespread in poultry industry. Adamantane is a group of antiviral agents which is effective both in prevention and treatment of influenza A virus infections. These drugs inhibit M2 protein ion channel which has role on viral replication. OBJECTIVES: The main objective of this study is to evaluate M gene of avian influenza ...

متن کامل

The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR.

An interhelical distance has been precisely measured by REDOR solid-state NMR spectroscopy in the transmembrane tetrameric bundle of M2-TMP, from the M2 proton channel of the influenza A viral coat. The high-resolution structure of the helical backbone has been determined using orientational restraints from uniformly aligned peptide preparations in hydrated dimyristoylphosphatidylcholine bilaye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 286 3  شماره 

صفحات  -

تاریخ انتشار 1999